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Many kinetic equations derived from a simple geometrical model can account for the shrinkage 
rate of pellets of particles. Nevertheless, even when a kinetic equation is followed the calculation of 
the apparent diffusion coefficient may not be meaningful if the system under study and the theoreti- 
cal model does not fit closely. This is shown by the experimental results on sintering of fine particles 
of anatase and alumina. When the system closely fits the model, the predicted sintering equation 
is observed and the calculated diffusion coefficients are close to the cation diffusion coefficients. 
But when the system (polyhedral particles) does not fit the model, an apparent agreement is found 
between the experimental results and the theoretical law corresponding to an unrelated model so that 
the calculated diffusion coefficient is meaningless. 

The word “sintering” covers many complex 
phenomena and their scientific approach 
requires the use of simplified models. Such 
models allow an establishment of relation- 
ships between some geometrical parameters of 
the system and the time of sintering when a 
suitable mechanism for material transport is 
assumed. But the equations which apply to 
the sintering of spheres, for example, cannot 
be applied in the case of lamellar or porous 
bodies. Similarly, in the case of very small 
particles (less than 1000 A) some of the 
hypotheses which are convenient for large 
particles cannot be applied any more and 
others models must be proposed (I). 

The determination of the diffusion coeffi- 
cients (when the mechanism for the material 
transport is diffusion) from kinetic equations 
of sintering (shrinkage of pellets versus time, 
for instance) is possible only when the hypo- 
theses used in these equations are stated 
precisely and are justified. In this work the 
values of the apparent diffusion coefficients, 

calculated from the isotherms of shrinkage of 
titanium dioxide and alumina compacts, are 
discussed and compared with the values of 
diffusion coefficients of the anion and the 
cation in the corresponding oxide. 

Kinetic Equations for the Sintering of Spherical 
Particles 

Many sintering models have been proposed 
to derive the shrinkage rate of compacts of 
spherical particles. In most cases the starting 
point is the calculation of the stress normal to 
the junction area of the particles. In the case 
of two grains bound by a flat junction area 
and having a symmetry axis perpendicular to 
this area, the stress normal to this junction 
area is (by supposing mass transport by diffu- 
sion): 

o(r) = 7 + C, 
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where Y is the distance from the symmetry 
axis and K and C are two constants. A par- 
ticular value of D(Y) is 00;) for r = x (x is the 
radius of the junction area) : 

I 

! 
I 

\ R 

and 

m 

o(r) = f(r2 - x2) - y (3) 

R, and R2 are the principal radii of curvature 
of the grain surface at the intersection of two 
particles and y is the surface tension. In order 
to calculate K, a second boundary condition 
must be known. This boundary condition may 
be, for example, a particular value of the stress 
n(r,,) at a given distance r0 from the center of 
the particles. The stress is then given by 

and the flux of atoms (atoms crossing a unit FIG. 1. Model of tangent spheres with the formation 

of the surface per unit of time) is related to the of a neck. 

stress gradient (2) for r = x, The neck radius is related to time by 

(5) x5 4OyDQ 
F2 = 7 4 (9 

using Eq. (4) : 

j = _ g(y(i + ?.-) + c~ro))& . 
where D is the vacancy volume and p N x2/ 

(6) CW 0%. 1). Kiww and Berg V).obt$ned 
the same equation but they applied it to 

Microscopic observations of spherical par- the shrinkage of two particles in contact. 
titles in contact shows the formation of a neck The equation for the shrinkage ratio is then 
between two particles during the initial stage of 
the sintering (3-5). Kuczynski (3), by writing 
that the vacancy concentration gradient is 
inversely proportional to the curvature radius 
p of the neck, assumed that the neck is the 
source of vacancies which disappear at a 
distance of the same order of magnitude as the 
radius of curvature. With these conditions, 
using Eq. (6) (R, =x, R, =-p, ro=x-p, 
cc,,,) = 0), the flux is given by (Fig. 1) 

(7) 

(10) 

The hypotheses which permitted the estab- 
lishment of Eqs. (9) and (10) make it impossible 
to use these equations to described the 
shrinkage. Moreover, it has been shown that 
the assumptions leading up to Eqs. (9) and 
(10) are entirely inappropriate (7, 8). Never- 
theless, the time dependence for neck growth 
or shrinkage in these equations has been 
observed (5,9, IO). 

The distance between the centers of two 
and as p is much smaller than x 

. -DY -. 
J = kTp2 

particles can only decrease when the material 
transport takes place from the center of the 

(8) junction zone to the neck surface. In this case, 
a stress is exerted by a particle upon another at 
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the center of the junction area. The boundary 
condition can be obtained from the condition 
of equilibrium of the grain boundary (II, 12) 

x 

27~ /” a(r)r dr = 2nxy cos CL, (11) 
0 

where c1= (rc - /I)/2 and /I is the grain boun- 
dary groove angle. 

Two cases can be considered according to 
the size of the particles : 

(a) R is large and a neck is formed between 
the particles (Fig. 2, the most general case in 
sinteringexperiments). 

If c1 N 0, Eq. (11) gives 

1 1 G(O) = y i-p- + p* t 1 (12) 

x and p are the main radii of curvature of the 
neck. 

An equation which takes into account both 
volume and grain boundary diffusion has been 
given by Johnson (II) : 

y2.06j= 2.63y520, kTR3 yl.03 + 0.7OylzD, 
kTR4 (13) 

ify = AL/Lo for less than 4 y0 shrinkage. D, and 
DB can be determined from the slope and the 
intercept of the plot y2.06j versus y1.03. 

(b) R is small and no neck is formed between 
the particles. 

FOG. 2. Model of secant spheres with formation 
of a neck. 

FIG. 3. Model of secant spheres. 

In the case of very small spherical particles 
(R < 1000 A) a study by electron microscopy 
(13) shows that no neck with a negative radius 
of curvature is formed between the particles. 
The geometry of the system is described by two 
secant spheres as shown in Fig. 3, and RI = Rz 
= R (main radii of curvature near the junction 
area of the two particles). Moreover the 
boundary condition (Eq. (11)) is now : 

2n fn(r)r dr = 2n.q sin 0, 
6 

where sin 0 = cos CI and as sin 0 = x/R 

2n [u(r) r dr = 2rcx2/R. 
0 

With this condition, the stress at the center of 
the neck is 

a(0) = 6-y/R 

and 

j = 16Dy/(kTRx), 

assuming radial diffusion in a cylinder. 
The neck radius is related to time by 

x2 16yDQ 
-=RkTt. 2 (14) 

Such a relationship between neck size and 
time has been observed (14) in sintering study 
of submicron particles of alumina and zir- 
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conia by electron microscopy. The shrinkage 
ratio is then: 

AL 16yDO -=-. 
LO R3kT (15) 

(c) R is still smaller (R - 100 A). 
In this case a study of the porosity of the 

compacts during sintering shows that the 
compact must be described as a porous 
polycrystalline body. If i is the average grain 
size and ! is the average pore size, the order of 
magnitude of the shrinkage rate will be 
(assuming a Nabarro-Herring (15,16) micro- 
creep mechanism) : 

The microscopic examination and the study 
of the porosity of compacts made with ultra- 
fine particles of antimonium doped titanium 
dioxide show that i and F remain constant as 
long as a linear relationship between shrinkage 
and time is observed (13). 

Equations (15) and (16) imply that all the 
hypotheses made in their derivation are 
satisfied and that surface diffusion can be 
neglected. 

A formal experimental verification does not 
allow use of the kinetic equations, in particular 
for the determination of diffusion coefficients. 
In an actual compact, shapes and sizes of 
particles are various and some interparticular 
contacts (for example, plane over plane) do 
not cause shrinkage. In this case the total 
shrinkage is smaller than might be expected. 
Moreover, other phenomena can also occur, 
like particle rearrangement, which result in a 

more important shrinkage. It is therefore 
possible that the agreement between the 
theoretical and experimental laws is for- 
tuitous. 

Experimental 

In order to test the applicability of the 
kinetic equations, the solids used for the 
sintering must be as well defined as possible. 
Samples of oxide powders of controlled 
shapes and sizes were prepared in an oxygen- 
hydrogen flame reactor (17) by decomposition 
of the corresponding metal chloride vapor. 
Doped samples are obtained from a mixture of 
chlorides. Characteristics of samples used are 
given in Table I. 

Particles of anatase TiOJ are spherical 
and nonporous and all have approximately 
the same size, whereas particles of anatase 
TiO,B of similar surface area are very different 
in shape and size. Some of these particles are 
spherical but most of them present well- 
defined facets and their sizes are scattered 
between a few hundred and a few thousand 
Angstr8ms. 

The remaining anatase samples contain 
0.1, 1 .O, and 1.5 antimony atoms per 100 
titanium atoms and the sample of alumina is 
made out of polyhedral particles (edges and 
facets). All these particles have a radius of 
about 100 A. 

The isothermal sintering of these samples is 
followed by a photographic measurement of 
the length of a compressed pellet (4 t/cm’) 
heated in a few seconds up to the required 
temperature (28). 

TABLE I 

TiOz A TiO, B TiO, Sb(O.l) TiOl Sb (1) Ti02 Sb (1.5) A1203 
__---__ 

Specific area (m2.g-‘) 10.6 13 86 85 82 132 
Mean diameter,” d(A) 1470 1200 180 180 190 170 
Textural aspect Spheres Heterogeneous Polyhedrous uniformly sized 

uniformly shapes and 
sized sizes 

a The mean diameter d is calculated from the equation d= 6/Sp, where S is the surface area and p is the den- 
sity of oxide. 
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Kinetic results were published elsewhere 
(18). The initial stage of sintering, which 
corresponds to the formation of junctions 
between particles, takes place during the first 
10 or 15 set of the process, before the thermo- 
dynamic equilibrium is attained. Its study was 
presented separately (19). 

Moreover, the study of the surface area 
change versus shrinkage (13, 29) shows that 
surface diffusion is not a predominant 
mechanism in the case of the samples studied. 

(a) TiO A: Spherical Particles 
The isothermal shrinkage curves of pellets 

made with spherical particles present a linear 
part (18), which corresponds to the equation 
derived from the model of secant spheres 
without the formation of a neck. Moreover, 
the microscopic examination of particles 
during sintering shows that this model fits 
closely (13). It is thus possible to calculate 
the diffusion coefficient from Eq. (15). 
Between 750 and 825°C an apparent diffusion 
coefficient is given by (Fig. 4) 

cm2 set-‘. 

Temperature (‘C) 

0.85 0.90 0.95 
1000/T (K-‘t 

1.00 

FIG. 4. Comparison of the diffusion coefficients 
calculated from the sintering data for TiOz with the 
diffusion data in the literature. Curve 1 ?Ti in TiOl 
(24). Curves 2 and 3 :Dxx and D,; of 44Ti in TiOz (25). 
Curves 4, 5, and 6:‘*0 in TiO, (23). C, sintering Ti02 
A from Eq. (15); /i and A, sintering TiO,B from Eqs. 
(13) and (IO), respectively; 0, o, l , sintering TiO,Sb 
containing, respectively, 0.1, 1.0, and 1.5 7, of Sb 
from Eq. (16). 

(b) Alumina and Doped Anatase Samples 
In the case of alumina and of doped anatase 

samples the isothermal shrinkage curves also 
exhibit alinear part (18). But the suitable model 
here is that of a polycrystalline body with 
pores. As the average radius of the pores is 
constant and close to the radius of particles 
(23), Eq. (16) must be used in order to cal- 
culate the order of magnitude of the diffusion 
coefficient. For alumina the apparent diffusion 
coefficient is expressed by (Fig. 5) 

D= 1.4 x 10’exp 

in the temperature range 1100 to 1300°C. In 
the case of the samples of titanium dioxide 
containing 0.1, 1 .O, and 1.5 y0 of antimonium, 
the apparent diffusion coefficients are, respec- 
tively (Fig. 4), 

Temperature (‘C) 

17 , a 
0.4 05 0.6 0.7 

1000 /T (K-l) 

FIG. 5. Comparison of the diffusion coefficients 
calculated from the sintering data of AlZ03 with the 
diffusion data in the literature. Curves 1, 2 and 3 : 
‘*O in A1203 (27). Curve 4: 26Al in A120s (26). Curve 
5: sintering Al,03 (5). 0, sintering A1203 (this 
studv) from ECI. (16). 
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for temperatures between 700°C and 800°C. 

(c) TiO, B: Heterogeneous Particles 
In the case of compacts made with hetero- 

geneous particles the isothermal shrinkage as a 
function of time can be expressed by an 
equation of the form : 

dL = ,I&’ 

with n =0.33 between 620 and 700°C and 
n = 0.38 between 750 and 840°C. An inter- 
mediate value 12 = 0.35 is observed for 730°C. 

Although the geometry of the system under 
study is very far from the geometry of the 
model, the values of D, (volume diffusion 
coefficient) and b DB (grain boundary diffusion 
coefficients multiplied by the grain boundary 
width) have been calculated from Eq. (13) 
(Figs. 4 and 6, respectively) : 

Moreover, as the value of n (0.38) is very 
close to the value given by Kingery and 
Berg (6), the apparent diffusion coefficient D 
has been calculated from Eq. (10) in order to 

I 
0.85 0.90 0.95 1.00 

1000/T (K -’ ) 

FIG. 6. Product of the grain boundary diffusion 
coefficient and grain boundary width calculated for 
Ti02B from Eq. (16). 

compare the results with results obtained 
from Eqs. (13), (15), and (16) (Fig. 4): 

D = 7.2 x 10m2 exp 

Discussion 

The activation energy of sintering for all 
samples of titanium dioxide under study 
varies between 72 and 77 kcal/mole. These 
values are very close to the values obtained by 
Whitmore and Kawai (20) (74 kcal/mole) and 
Anderson (21) (77 kcal/mole) in the case of the 
sintering of rutile particles 0.35 pm in diameter 
and by O’Brian and Parravano (22) (68 
kcal/mole) in the case of rutile spheres 1 mm 
in diameter. All of these values are of the same 
order of magnitude as those determined by the 
study of the isotopic exchange reaction for the 
diffusion of oxygen in rutile (23) (60 to 75 
kcal/mole) and somewhat higher than the 
value for the diffusion coefficient of 44Ti in 
rutile (61.6 kcal/mole (24), 59.9 kcal/mole for 
D,,, and 48.5 kcal/mole for D,, (25)). 

A comparison of the diffusion coefficients 
calculated from the sintering experiments of 
titanium dioxide with the values given in the 
literature (Fig. 4) shows that values obtained 
with spherical particles of titanium dioxide 
and with antimony-doped titanium dioxide 
are about 10 times as high as the oxygen 
diffusion coefficient in rutile (23) determined 
in the same temperature range. However, 
these values are in good agreement with the 
values extrapolated from 44Ti diffusion data 
(24, 25). The rate-controlling process of 
sintering should be the diffusion of the 
cation. 

This conclusion is supported by a com- 
parison of the diffusion coefficient calculated 
from the sintering data of d-alumina with the 
diffusion data in the literature (Fig. 5) (26,27). 
Indeed these values are higher than the value 
of the diffusion coefficient of oxygen in alu- 
mina, but are of the same order of magnitude 
as the extrapolated values of the diffusion 
coefficient of aluminum. They are also very 
close to the data obtained by Kuczynski (5) 
by measurement of the neck growth between 
spheres of alumina. 
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In the case of the sintering of heterogeneous 6. W. D. KINGERY AND M. BERG, J. Appl. Phvs. 26, 

particles of titanium dioxide (TiO, B), the 1205(1955). 

apparent diffusion coefficient D,, calculated i. R. L. EAUI~, D. S. WiLaihsoi\i, AND G. C. 

from the Eq. (13) compares favorably with 
the results obtained from spherical particles. 
On the other hand, diffusion coefficients 
calculated from Eq. (10) are in good agree- 
ment with the diffusion coefficient of oxygen, 
but neither this equation, nor Eq. (13) can be 
applied in this case: the first because of the 
inappropriate assumption in the derivation 
and both because the geometrical model does 
not fit the experimental system. 

Conclusion 

Kinetic equations of sintering, established 
from simple geometric models, must be used 
with caution in the case of heterogeneous 
samples of poorly defined particles. In some 
cases, an apparent agreement can be found 
between the theoretical and experimental 
Iaws, but it must be considered as fortuitous 
when all hypotheses underlying the theoretical 
laws are not satisfied. More refined mathe- 
matical treatments would not lead to improve- 
ments of the calculated values of the diffusion 
coefficient as long as the geometry of the 
system under study remains far from the 
theoretical geometry involved in the model. 

By choosing a suitable model and by using 
well-defined particles of alumina and of pure or 
antimony-doped titania, it can be concluded 
that, in the case of these oxides, the mass 
transport, during sintering, is controlled by 
the cation diffusion. 
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